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Abstract. We have constructed a Monte Carlo generator1 for lowest-order predictions for the processes
γγ → 4f and γγ → 4fγ in the standard model and extensions thereof by an effective γγH coupling as
well as anomalous triple and quartic gauge-boson couplings. Polarization is fully supported, and a realistic
photon beam spectrum can be taken into account. For the processes γγ → 4f all helicity amplitudes are
explicitly given in a compact form. The presented numerical results contain, in particular, a survey of
cross sections for representative final states and their comparison to results obtained with the program
package Whizard/Madgraph. The impact of a realistic beam spectrum on cross sections and distributions
is illustrated. Moreover, the size of various contributions to cross sections, such as from weak charged- or
neutral-current, or from strong interactions, is analyzed. Particular attention is paid to W -pair production
channels γγ → WW → 4f(γ) where we investigate the impact of background diagrams, possible definitions
of the W -pair signal, and the issue of gauge-invariance violation caused by finite gauge-boson widths. Finally,
the effects of triple and quartic anomalous gauge-boson couplings on cross sections as well as the possibility
to constrain these anomalous couplings at future γγ colliders are discussed.

1 Introduction

A photon (or γγ) collider [1] as an option at a future e+e−
linear collider extends the physics potential of such a ma-
chine substantially. It provides us with information about
new physics phenomena, such as properties of the Higgs
boson or of new particles, which is in many respects com-
plementary in the e+e− and γγ modes (see, e.g., [1, 2] and
references therein). For instance, Higgs-boson production
in the s-channel [1–4] becomes accessible which is highly
suppressed in e+e− annihilation, but very interesting for
Higgs bosons of relatively large mass. Owing to its large
cross section, W -pair production is of particular interest
at a γγ collider. For instance, it can be used for preci-
sion tests of the gauge sector of the electroweak standard
model (SM). While the reaction e+e− → WW depends on
the gauge-boson couplings ZWW and γWW , the corre-
sponding reaction at a γγ collider, γγ → WW , is sensitive
to the gauge-boson couplings γWW and γγWW . At an
e+e− collider the coupling γγWW is only directly acces-
sible through the bremsstrahlung process e+e− → WWγ
which is suppressed by a factor α(0)/π with respect to the
non-radiative process e+e− → WW . Therefore, the sensi-
tivity to the anomalous γγWW coupling in the γγ mode
is expected to be an order of magnitude better than in

1 The corresponding Fortran code can be obtained from
the authors upon request.

the e+e− mode. The precision for the measurement of the
γWW coupling is comparable in both modes [5].

Since W bosons decay into fermion–anti-fermion pairs,
the actually observed final states of γγ → WW involve
four fermions. Lowest-order predictions for γγ → 4f pro-
cesses (with monochromatic photon beams and leptonic or
semi-leptonic final states) were discussed in [6, 7]. With
the exception of [8], the existing analyses on non-standard
couplings at a γγ collider, which focus on anomalous triple
gauge-boson couplings (ATGC) [5,9], on anomalous quar-
tic gauge-boson couplings (AQGC) [3,10], on CP -violating
gauge-boson couplings [11], and on effects of strongly in-
teracting longitudinal W bosons [12], treat W bosons as
stable. In the above studies radiative corrections were not
properly taken into account either.

In view of the achievable experimental precision, the
theoretical predictions should include, however, both radia-
tive corrections and the decays of the W bosons, i.e., the full
process γγ → 4f should be considered. The lowest-order
amplitudes to the processes γγ → 4f include diagrams
with two resonant W bosons (“signal diagrams”) as well
as diagrams with only one or noW -resonance (“background
diagrams”). Compared to the doubly-resonant diagrams,
such singly-resonant and non-resonant diagrams are sup-
pressed by roughly a factor ΓW /MW and (ΓW /MW )2, re-
spectively. On the other hand, radiative corrections modify
the theoretical predictions by contributions of O(α). Since
ΓW /MW is also of O(α), both the off-shell effects and the
radiative corrections contribute to the γγ → WW → 4f
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cross section in the same perturbative order. Hence, it is
a promising approach to calculate the lowest-order matrix
elements to the full γγ → 4f process and take into account
only the doubly-resonant part of the O(α) corrections to
the reaction γγ → WW → 4f . This approach is known
as double-pole approximation (DPA) where only the lead-
ing terms in the expansion of the amplitude around the
poles of the resonant W propagators are included in the
calculation. The overall accuracy is then O(α) relative to
the lowest-order prediction for the doubly-resonant W -pair
signal. This approach has been described in [13] in some
detail and successfully applied to W -pair production in
e+e− annihilation in different versions [14–18].

The doubly-resonant virtual corrections consist of fac-
torizable and non-factorizable contributions. The former
comprise the corrections to on-shell W -pair production [19–
21]2 and the decay of on-shell W bosons [23], the latter
account for soft-photon exchange between the production
and decay subprocesses [24]. Although the basic building
blocks for the virtual corrections exist in the literature,
the combination into a complete set of O(α) corrections
in DPA has not been done yet. The evaluation of brems-
strahlung processes γγ → 4f + γ considered in this work
serves as a further building block for the O(α) corrections
in DPA.

The calculation of lowest-order predictions for the pro-
cesses γγ → 4f and γγ → 4fγ described in this paper
closely follows the approach of [16] for the e+e− case.
Fermion masses are neglected everywhere assuming that
all mass singularities are avoided by phase-space cuts. Fol-
lowing [16] we construct an event generator based on multi-
channel Monte Carlo integration [25] using adaptive self-
optimization [26]. A realistic photon spectrum can option-
ally be included in the parametrization of CompAZ [27]
which is based on the results of [28]. In addition to the
pure SM case, we calculate also the lowest-order matrix ele-
ments including anomalous couplings. Specifically, we con-
sider ATGC [29,30] corresponding to SU(2)×U(1)-gauge-
invariant dimension-6 operators and genuine AQGC [31,32]
which respect electromagnetic gauge-invariance and cus-
todial SU(2)c symmetry. Finally, we include an effective
γγH coupling in our analysis in order to study the Higgs
resonance in the reaction γγ → H → WW/ZZ → 4f .

The performance of the Monte Carlo generator is il-
lustrated in a detailed numerical discussion. We present a
survey of cross sections for a set of representative 4f and
4fγ final states and compare them with results obtained by
the combination of the programs Whizard [33] version 1.28
and Madgraph [34]. We find agreement within statistical
uncertainties. Moreover, we discuss some invariant-mass,
energy, and angular distributions. We illustrate the im-
pact of the realistic beam spectrum on cross sections and
distributions, and study the size of various contributions
to cross sections, such as from weak charged- or neutral-
current, or from strong interactions. In view of the aimed
precision calculation for γγ → WW → 4f(γ), which will
include radiative corrections in DPA, we elaborate on the

2 Radiative corrections to on-shell W -pair production, γγ →
WW , were also considered in [22].

possibility to define a proper W -pair production signal. In
this context, we investigate a naive signal definition which
is based on doubly-resonant diagrams only and thus vio-
lates gauge invariance. We find that this naive definition,
which works well for the e+e− case (cf. discussion of the so-
called “CC03” cross section in [35]), is not satisfactory for
γγ → WW → 4f , but requires a proper gauge-invariant
definition of the residue on the double resonance. For some
γγ → 4f and γγ → 4fγ processes we investigate the effects
of gauge-invariance violation by introducing gauge-boson
decay widths. To this end, we compare results obtained
with the naive introduction of constant or running widths
with the gauge-invariant result obtained with the so-called
“complex-mass scheme” [16]. Finally, we discuss the effects
of ATGC and AQGC on cross sections. In particular, we
estimate the bounds on anomalous couplings that could be
set by a γγ collider, by assuming a photon spectrum and
luminosities expected for the γγ option at TESLA.

This paper is organized as follows. In Sect. 2 we describe
the calculation of the helicity amplitudes in the SM and give
explicit results for γγ → 4f . In Sects. 3 and 4 we describe
the calculation of the amplitudes with anomalous gauge-
boson couplings and an effective γγH interaction. Section 5
provides some details about the numerical Monte Carlo
integration. In Sect. 6 we present the numerical results as
outlined above. Our summary is given in Sect. 7.

2 Analytical results for amplitudes
in the standard model

2.1 Notation and conventions

We consider reactions of the types

γ(k1, λ1) + γ(k2, λ2) (2.1)

→ f1(p1, σ1) + f̄2(p2, σ2) + f3(p3, σ3) + f̄4(p4, σ4),

γ(k1, λ1) + γ(k2, λ2)

→ f1(p1, σ1) + f̄2(p2, σ2) + f3(p3, σ3) + f̄4(p4, σ4)

+γ(p5, σ5). (2.2)

The arguments label the momenta ki, pj and helicities λk,
σl (which take the values ±1/2 in the case of fermions and
±1 in the case of photons) of the corresponding particles.
We often use only the signs to denote the helicities. The
fermion masses are neglected everywhere.

For the Feynman rules we follow the conventions of
[36]. We extend the usual linear gauge-fixing term in the
’t Hooft–Feynman gauge by a non-linear part according
to [16,20,37] such that the vertex γWφ vanishes, where
φ are the would-be Goldstone bosons corresponding to
the W bosons. Note that this also affects the gauge-boson
couplings γγWW and γWW . The corresponding Feynman
rules relevant for γγ → 4f(γ) in lowest order can be found
in [16]. Since we neglect fermion masses, the would-be
Goldstone bosons do not couple to fermions and do not
occur in the Feynman graphs of the SM amplitudes to
γγ → 4f(γ), which leads to a considerable reduction of
the number of Feynman diagrams.
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2.2 Classification of final states for γγ → 4f(γ)

The final states for γγ → 4f and γγ → 4fγ can be classified
similarly to the processes e+e− → 4f and e+e− → 4fγ [16].
In the following, f and F are different fermions (f �= F ),
and f ′ and F ′ denote their weak-isospin partners, respec-
tively. We distinguish between states that are produced
via charged-current (CC), via neutral-current (NC) inter-
actions, or via both interaction types:

(i) CC reactions:
γγ → ff̄ ′FF̄ ′ (CC31 family),

(ii) NC reactions:
(a) γγ → ff̄F F̄ (NC40 family),
(b) γγ → ff̄f f̄ (NC2·40 family),

(iii) Mixed CC/NC reactions:
γγ → ff̄f ′f̄ ′ (mix71 family).

The radiation of an additional photon does not change this
classification. Following [38] we give the names of the pro-
cess families in parentheses where the numbers correspond
to the number of Feynman diagrams involved in unitary
or non-linear gauge (for processes without neutrinos in the
final state, not counting gluon-exchange diagrams).

Since the matrix elements depend on the colour struc-
ture of the final state we further distinguish between lep-
tonic, semi-leptonic, and hadronic final states. Keeping
in mind that we neglect fermion masses, omitting four-
neutrino final states, and suppressing reactions that are
equivalent by CP symmetry we end up with 17 different
representative processes which we have listed in Table 1.

Since thephotons are polarized afterComptonbackscat-
tering, final states that are flavour equivalent up to a CP
transformation need not necessarily yield the same cross
section if the convolution over a realistic photon beam spec-
trum is included. However, as we neglect fermion masses,

Table 1. Set of representative processes for γγ → 4f(γ)

Final state Reaction type γγ →
leptonic CC e−ν̄eνµµ+

NC(a) e−e+νµν̄µ

e−e+µ−µ+

NC(b) e−e+e−e+

CC/NC e−e+νeν̄e

semi-leptonic CC(c) e−ν̄eud̄

NC(a) νeν̄euū

νeν̄edd̄

e−e+uū

e−e+dd̄

hadronic CC ud̄sc̄

NC(a) uūcc̄

NC(a) uūss̄

NC(a) dd̄ss̄

NC(b) uūuū

NC(b) dd̄dd̄

CC/NC uūdd̄

��

���

�

��

���

��
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Fig. 1. Generic diagram for the process γγ → 4f where the
photons γ1, γ2 couple to the fermions f1, . . . , f̄4 and the gauge
boson V in all possible ways

this is only relevant for the semi-leptonic CC processes
γγ → e−ν̄eud̄(γ) and γγ → νee

+dū(γ).

2.3 Lowest-order amplitudes for γγ → 4f

2.3.1 Construction of matrix elements

The amplitudes for the processes γγ → 4f are constructed
by attaching the two incoming photons in all possible ways
to the corresponding diagrams with four external fermions
as shown in Fig. 1. The matrix element of the generic di-
agram in Fig. 1, where two fermion lines are linked by a
gauge boson V , can be written as

Mσ1σ2σ3σ4
λ1λ2,V (ki, pj , Qj) (2.3)

= 4e4δσ1,−σ2δσ3,−σ4 gσ1
V f̄1f2

gσ3
V f̄3f4

Aσ1σ3
λ1λ2,V (ki, pj , Qj),

where ki, pj and Qj (i = 1, 2; j = 1, . . . , 4) stand for the
momenta and relative electric charges of the particles, re-
spectively. The coupling factors (relative to the electric
unit charge e) read

gσ
γf̄ifi

= −Qi,

gσ
Zf̄ifi

= − sw

cw
Qi +

I3
w,i

cwsw
δσ−,

gσ
Wf̄if ′

i
=

1√
2sw

δσ−, gσ
gf̄ifi

=
gs

e
, (2.4)

where I3
w,i = ±1/2 denotes the weak isospin of the fermion

fi and gs the strong coupling constant. The weak mixing
angle is defined by

cos θw = cw =
MW

MZ
, sw =

√
1 − c2

w. (2.5)

Quark mixing is neglected everywhere, i.e. we set the CKM
matrix equal to the unit matrix. The auxiliary functions
Aσ1σ3

λ1λ2,V are calculated within the Weyl–van der Waerden
(WvdW) formalism following the conventions of [39]. The
WvdW spinor products are defined by

〈pq〉 = εABpAqB (2.6)

= 2
√

p0q0

(
e−iφp cos

θp

2
sin

θq

2
− e−iφq cos

θq

2
sin

θp

2

)
,
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where pA, qA are the associated momentum spinors for
the momenta

pµ = p0(1, sin θp cos φp, sin θp sin φp, cos θp),

qµ = q0(1, sin θq cos φq, sin θq sin φq, cos θq). (2.7)

Moreover, we define the shorthands

〈piPkpj〉 = pi,ȦP ȦB
k pj,B = pi,ȦpȦ

k pB
k pj,B

= 〈pipk〉∗〈pjpk〉,
〈pi[Pl + Pm]pj〉 = 〈piPlpj〉 + 〈piPmpj〉, (2.8)

where pk,l,m are light-like momenta, i.e., p2
k = p2

l = p2
m =

0. In the following, the denominators of the gauge-boson
propagators are abbreviated by

PV (p) =
1

p2 − M2
V

, V = γ, Z, W, g, Mγ = Mg = 0.

(2.9)
The introduction of the finite width is described in Sect. 2.4
below.

The auxiliary functions Aσ1σ3
λ1λ2,V explicitly read

A−−
++,V (ki, pj , Qj) = (〈p2p4〉∗)2

×
{

−Q2
1

〈p1p2〉∗〈p3p4〉PV (p3 + p4)
〈k1p1〉∗〈k1p2〉∗〈k2p1〉∗〈k2p2〉∗

−Q1Q3
(p1 + p2 − k1)2PV (p1 + p2 − k1)

〈k1p1〉∗〈k1p2〉∗〈k2p3〉∗〈k2p4〉∗

+Q3(Q1 − Q2)PV (p1 + p2) ×[−〈p2p4〉∗〈p1p2〉 + 〈k1p4〉∗〈k1p1〉M2
V PV (p1 + p2 − k1)

〈k1p2〉∗〈k1p4〉∗〈k2p3〉∗〈k2p4〉∗

+(k1 ↔ k2)
]

+(Q1 − Q2)2PV (p1 + p2)PV (p3 + p4)

×
[
−〈p2p4〉∗ 〈p2p4〉∗〈p1p2〉〈p3p4〉 + M2

V 〈p1p3〉
2〈k1p2〉∗〈k1p4〉∗〈k2p2〉∗〈k2p4〉∗

+M2
V PV (p1 + p2 − k1)

〈k1p1〉〈k2p3〉
〈k1p2〉∗〈k2p4〉∗

]

+ ({p1, Q1; p2, Q2} ↔{p3, Q3; p4, Q4})
}

,

A−−
+−,V (ki, pj , Qj)

= Q2
1PV (p3 + p4)

〈p2p4〉∗〈k1p1〉〈k2[P2 + P4]p3〉
〈k1p1〉∗〈k2p1〉(p2 + p3 + p4)2

+Q2
2PV (p3 + p4)

〈k2p2〉∗〈p1p3〉〈p4[P1 + P3]k1〉
〈k1p2〉∗〈k2p2〉(p1 + p3 + p4)2

+Q1Q2PV (p3 + p4)
〈p2[K1 − P1]p3〉〈p4[K1 − P3]p1〉

〈k1p1〉∗〈k1p2〉∗〈k2p1〉〈k2p2〉

+(Q2 − Q1)PV (p3 + p4)
〈p2p4〉∗〈p1p3〉
〈k1p2〉∗〈k2p1〉

×
[
Q2

〈p4[K1 − P3]p1〉
〈k1p4〉∗〈k2p2〉 + Q1

〈p2[K1 − P1]p3〉
〈k1p1〉∗〈k2p3〉

]

+
1
2

(Q2 − Q1)2PV (p1 + p2)PV (p3 + p4)

×〈p2p4〉∗〈p1p3〉 ×
〈p2[K1 − P1]p3〉〈p4[K1 − P3]p1〉 − M2

V 〈p2p4〉∗〈p1p3〉
〈k1p2〉∗〈k1p4〉∗〈k2p1〉〈k2p3〉

+ [−Q1 + (Q1 − Q2)2(k1p1)PV (p1 + p2)]

× [Q4 + (Q3 − Q4)2(k2p4)PV (p3 + p4)]

× (〈p2[K1 − P1]p3〉)2PV (p1 + p2 − k1)
〈k1p1〉∗〈k1p2〉∗〈k2p3〉〈k2p4〉

+ ({p1, Q1; p2, Q2} ↔{p3, Q3; p4, Q4}) . (2.10)

The other auxiliary functions Aσ1σ3
λ1λ2,V follow from the re-

lations

A−σ1,σ3
λ1λ2,V (ki, pj , Qj)

=
[
Aσ1σ3

λ1λ2,V (ki, pj , Qj)
]

{p1,Q1} ↔{p2,−Q2}
,

Aσ1,−σ3
λ1λ2,V (ki, pj , Qj)

=
[
Aσ1σ3

λ1λ2,V (ki, pj , Qj)
]

{p3,Q3} ↔{p4,−Q4}
(2.11)

and

A−σ1,−σ3
−λ1,−λ2,V (ki, pj , Qj) =

[
Aσ1σ3

λ1λ2,V (ki, pj , Qj)
]∗

. (2.12)

The last relation expresses a parity transformation. Note
that the operation of complex conjugation in (2.12) must
not affect the gauge-boson widths in the propagator func-
tions PV which will be introduced in Sect. 2.4.

The calculation of the helicity amplitudes for γγ → 4fγ
proceeds along the same lines. The result, however, is quite
lengthy so that we do not write it down explicitly.

2.3.2 Squared amplitudes for leptonic and
semi-leptonic final states

The result for leptonic and semi-leptonic final states fol-
lows immediately from the generic amplitude (2.3). The
gauge boson cannot be a gluon in this case, and the sum
over the colour degrees of freedom in the squared matrix
elements trivially leads to the global factors N c

lept = 1 and
N c

semilept = 3. Note that for NC diagrams the result for the
amplitude is much simpler than for CC diagrams, since all
terms in (2.10) involving a factor (Q1 − Q2) or (Q3 − Q4)
drop out. Most of these terms originate from diagrams
where a photon couples to a virtual W boson.

The explicit results for the colour-summed squared ma-
trix elements read
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∑
colour

|MCC|2 = N c|MW |2, (2.13)

∑
colour

|MNC(a)|2 = N c |MNC|2 , (2.14)

∑
colour

|MNC(b)|2

= N c
∣∣∣MNC − [MNC]{p1,Q1,σ1} ↔{p3,Q3,σ3}

∣∣∣2 ,(2.15)∑
colour

|MCC/NC|2

= N c
∣∣∣MNC − [MW ]{p1,Q1,σ1} ↔{p3,Q3,σ3}

∣∣∣2 , (2.16)

where we use the shorthand

MNC =
∑

V =γ,Z

MV (2.17)

and suppress the helicity indices and the dependence on
momenta and relative charges. The relative signs account
for interchanging external fermion lines.

2.3.3 Squared amplitudes for hadronic final states

Next we consider purely hadronic final states, i.e., the
cases where all final-state fermions are quarks. This ren-
ders the summation of the squared matrix elements over
the colour degrees of freedom non-trivial, and in addition
gluon-exchange diagrams appear. Since gluon-exchange di-
agrams require two quark–anti-quark pairs in the final state
they do not appear in CC processes. For CC processes there
is only one possibility for the colour flow, and the summa-
tion over the colour degrees of freedom leads to an overall
factor N c

had,CC = 32 = 9 to the squared matrix elements
as given in (2.13).

For NC reactions we have to compute the sum of pure
electroweak (ew) and gluon-exchange (QCD) matrix ele-
ments,

Mc1c2c3c4
had = Mc1c2c3c4

had,ew + Mc1c2c3c4
had,QCD, (2.18)

where ci denotes the colour indices of the quarks. The elec-
troweak diagrams are diagonal in colour space and there-
fore read

Mc1c2c3c4
NC(a),had,ew = MNCδc1c2δc3c4 ,

Mc1c2c3c4
NC(b),had,ew = MNCδc1c2δc3c4 (2.19)

− [MNC]{p1,Q1,σ1} ↔{p3,Q3,σ3} δc3c2δc1c4 .

The gluon-exchange diagrams are obtained from the generic
formula (2.3) by inserting the corresponding generators,
λa/2, of the gauge group SU(3),

Mc1c2c3c4
NC(a),had,QCD = Mg

1
4

λa
c1c2

λa
c3c4

,

Mc1c2c3c4
NC(b),had,QCD = Mg

1
4

λa
c1c2

λa
c3c4

− [Mg]{p1,Q1,σ1} ↔{p3,Q3,σ3}
1
4

λa
c3c2

λa
c1c4

. (2.20)

The matrix element Mg is defined by (2.3) with V = g.
Carrying out the colour sum using the completeness

relation for the Gell-Mann matrices,

λa
ijλ

a
kl = − 2

3
δijδkl + 2δilδjk, (2.21)

yields ∑
colour

|MNC(a),had|2 = 9|MNC|2 + 2|Mg|2,
∑

colour

|MNC(b),had|2 = 9|MNC|2

+9
∣∣∣[MNC]{p1,Q1,σ1} ↔{p3,Q3,σ3}

∣∣∣2 + 2|Mg|2

+2
∣∣∣[Mg]{p1,Q1,σ1} ↔{p3,Q3,σ3}

∣∣∣2
−6 Re

{
MNC [M∗

NC]{p1,Q1,σ1} ↔{p3,Q3,σ3}
}

+
4
3

Re
{

Mg

[M∗
g

]
{p1,Q1,σ1} ↔{p3,Q3,σ3}

}
−8 Re

{
MNC

[M∗
g

]
{p1,Q1,σ1} ↔{p3,Q3,σ3}

}
−8 Re

{
Mg [M∗

NC]{p1,Q1,σ1} ↔{p3,Q3,σ3}
}

. (2.22)

All squared matrix elements of this section have been
numerically compared with results obtained with the pro-
gram Madgraph [34] at several phase-space points, and
perfect agreement has been found.

2.4 Implementation of finite gauge-boson widths

We have implemented the finite widths of the W - and Z-
boson propagators3 in four different ways:
(1) fixed width in all propagators:

PV (p) =
1

p2 − M2
V + iMV ΓV

, (2.23)

(2) step width (fixed width in time-like propagators):

PV (p) =
1

p2 − M2
V + iMV ΓV θ(p2)

, (2.24)

3 We have also supplemented the explicit gauge-boson masses
appearing in the numerators of (2.10) by the corresponding
widths, because these mass terms originate from denominators
upon combining different diagrams.
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(3) running width in time-like propagators:

PV (p) =
1

p2 − M2
V + ip2(ΓV /MV )θ(p2)

, (2.25)

(4) complex-mass scheme [16]: complex gauge-bosonmasses
are used everywhere, i.e.

√
M2

V − iMV ΓV instead of MV

in all propagators and couplings. This results in a constant
width in all propagators,

PV (p) =
1

p2 − M2
V + iMV ΓV

, (2.26)

and in a complex weak mixing angle

c2
w = 1 − s2

w =
M2

W − iMW ΓW

M2
Z − iMZΓZ

. (2.27)

The virtues and drawbacks of the first three schemes
are discussed in [40]. All but the complex-mass scheme, in
general, violate SU(2) gauge invariance; the step- and the
running-width schemes also violate electromagneticU(1)em
gauge invariance, which is preserved by using a fixed width.
As known from many examples in e+e− physics [16,40,41],
gauge-invariance-violating effects, in particular when en-
hanced by factors p2/M2

V as in the running-width scheme,
can lead to totally wrong results. Furthermore, the viola-
tion of U(1)em gauge invariance also causes a dependence
of matrix elements and cross sections on the gauge chosen
for external photons. In e+e− → 4f and e+e− → 6f this
problem does not occur since no external photons are in-
volved.

The complex-mass scheme, which was introduced in
[16] for tree-level calculations, preserves gauge invariance
and thus all Ward identities which rule gauge cancellations.
Its application is particularly simple for γγ → 4f(γ) in
the non-linear gauge. In this case, no couplings involving
explicit gauge-boson masses appear, and it is sufficient to
introduce the finite gauge-boson widths in the propagators
[cf. (2.26)] and to introduce the complex weak mixing angle
(2.27) in the couplings.

For CC processes γγ → 4f(γ) with massless fermions,
the fixed-width (FW) approach in the non-linear gauge and
the complex-mass scheme (CMS) are practically equiva-
lent, because all Feynman graphs are proportional to e4/s2

w
(e5/s2

w) and gauge-boson masses appear only in propaga-
tor denominators. In this case the corresponding ampli-
tudes in the two schemes differ only in the global factor
s2
w,FW/s2

w,CMS, where sw,FW and sw,CMS are the values of
sw in the different schemes, i.e., sw,FW is derived from the
ratio of real gauge-boson masses and sw,CMS from complex
masses. Thus, both squared amplitudes are gauge invariant
and are equal up to the factor |sw,FW/sw,CMS|4 which is
equal to 1 up to terms of O(Γ 2

W /M2
W ).

ForNCandCC/NCprocesses a similar reasoning can be
used to show that the fixed-width approach does not violate
gauge invariance in γγ → 4f(γ) for massless fermions. The
trick is to apply the above argument to gauge-invariant sub-
sets of diagrams. For NC diagrams with photon exchange,
which is the (gauge-invariant) QED subset of diagrams

(Fig. 1 with V = γ), there is nothing to show. The sum
of NC diagrams of type NC(a) with Z-boson exchange
(Fig. 1 with V = Z) again involves cw and sw only in a
global coupling factor (per helicity channel); the remaining
dependence on the gauge-boson masses is located in the
propagator denominators. Thus, the subamplitudes of the
fixed-width and the complex-mass scheme are again identi-
cal up to a global factor and both preserve gauge invariance
and Ward identities. For NC processes of type NC(b) a sec-
ond class of diagrams exists (Fig. 1 with V = γ, Z and ex-
ternal fermions interchanged). This new class of diagrams
forms a gauge-invariant subset because of the different flow
of fermion numbers. Thus, the reasoning for type NC(a)
applies to both classes of diagrams of NC(b) reactions. The
same argument is also valid for the subset of CC diagrams
in mixed CC/NC reactions.

In summary, we have argued that the use of naive fixed
gauge-boson widths does not lead to gauge-invariance vi-
olations in amplitudes for γγ → 4f(γ) as long as fermions
are massless and the non-linear gauge with vanishing γWφ
coupling (or the complex W boson mass in this coupling
if the ’t Hooft–Feynman gauge is chosen) is used. The
corresponding squared amplitudes agree with the ones of
the (gauge-invariant) complex-mass scheme up to terms
of O(ΓW /MW ), for CC processes even up to terms of
O(Γ 2

W /M2
W ).

2.5 W -pair signal diagrams and
double-pole approximation

Thediagrams toCCandCC/NCprocesses comprise graphs
with two, one, or no internal W boson lines that can become
resonant, similar to the situation for e+e− → WW → 4f
(see [35,42] and references therein). It is interesting to
investigate the possibility to define an amplitude for the
W -pair signal based on doubly-resonant contributions only,
because such an amplitude is much simpler than the full
amplitudes for four-fermion production and is universal
(up to colour factors) for all relevant 4f final states. More-
over, this study is an important exercise for the calcula-
tion of radiative corrections to γγ → WW → 4f in the
so-called double-pole approximation (DPA), where only
doubly-resonant contributions are taken into account. Tak-
ing simply all doubly-resonant diagrams, of course, yields a
result that is not gauge invariant. Nevertheless in the e+e−
case the lowest-order cross section based on such a gauge-
dependent amplitude (defined in the ’t Hooft–Feynman
gauge), known as “CC03 cross section”, is a very useful
quantity that is very close to the full 4f calculation if both
W bosons are close to resonance. The CC03 amplitude can
be rendered gauge invariant upon deforming the momenta
of the four outgoing fermions in such a way that the in-
termediate W boson states become on shell, because the
residues of the W -resonances are gauge-invariant quanti-
ties. This “on-shell projection”, which is part of the DPA,
involves some freedom, and different versions, which have
been described in [15,17], differ by contributions of relative
order O(ΓW /MW ).
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We want to perform the exercise to study the use-
fulness of a possible “CC03”4 off-shell cross section for
γγ → WW → 4f . To this end, we define the amplitude
for the off-shell W -pair signal by evaluating the three W -
pair diagrams in the non-linear gauge with polarization
vectors εi(ki) for the incoming photons, which obey the
gauge conditions

ε1(k1) · k2 = ε2(k2) · k1 = 0. (2.28)

In terms of WvdW spinors, this means that the gauge
spinors g1 and g2 of the photons are identified with the
spinors of the momenta k2 and k1, respectively. With
this choice the auxiliary functions for the matrix elements
(2.3) read

A−−
++,WW (ki, pj , Qj)

= PW (p1 + p2)PW (p3 + p4)
〈p2p4〉∗

〈k1k2〉∗

×
{

[PW (p1 + p2 − k1)]ΓW =0

×
[
〈k2p1〉〈k2p3〉〈k2[P1 + P2]k1〉

+〈k1p1〉〈k1p3〉〈k1[P3 + P4]k2〉

+
〈p1p3〉
〈k1k2〉∗ 〈k2[P1 + P2]k1〉〈k1[P3 + P4]k2〉

−2(k1 · k2)〈k1p1〉〈k2p3〉
]

− 1
2

〈p1p3〉〈k1k2〉
}

+ (k1 ↔ k2),

A−−
+−,WW (ki, pj , Qj) = PW (p1 + p2)PW (p3 + p4)

× [PW (p1 + p2 − k1) + PW (p1 + p2 − k2)]ΓW =0

×
{

〈k2[P1 + P2]k1〉

×
[ 〈k2p2〉∗〈k2p4〉∗〈p1p3〉

〈k1k2〉∗ − 〈p2p4〉∗〈k1p1〉〈k1p3〉
〈k1k2〉

]

−〈p2p4〉∗〈p1p3〉
2(k1k2)

〈k2[P1 + P2]k1〉2

+〈k2p2〉∗〈k2p4〉∗〈k1p1〉〈k1p3〉
}

. (2.29)

Note that the Aσ1σ3
λ1λ2,WW do not coincide with the parts of

the functions Aσ1σ3
λ1λ2,W of (2.10) that are proportional to

PW (p1 + p2)PW (p3 + p4) because the derivation of (2.10)
involves rearrangements of various singly-resonant contri-
butions. We point out that the definition (2.29) is neither
independent of the gauge fixing used to define gauge-boson
propagators nor of the gauge of the external photons. The

4 The name also fits to the γγ case where three W -pair
diagrams exist in unitary or non-linear gauge.

definition is gauge invariant after the outgoing fermion mo-
menta pi are on-shell projected as described above, while
leaving the resonant propagators PW (p1 +p2)PW (p3 +p4)
untouched.This defines the lowest-order amplitude inDPA.
Finally, we stress that the t- and u-channel W -propagators
in (2.29) do not receive a finite W -width; otherwise the
gauge invariance of the DPA would be spoiled.

3 Inclusion of anomalous
gauge-boson couplings

In this section we introduce the most important anomalous
gauge-boson couplings accessible by the process γγ → 4f
and give explicit analytical results for the corresponding
helicity amplitudes.

3.1 The effective Lagrangians

First we consider anomalous triple gauge-boson couplings
(ATGC) in the charged-current sector, i.e., anomalous
γWW and the related γγWW couplings. Instead of us-
ing rather general parametrizations of non-standard cou-
plings [29], we follow the approach already used at LEP2 to
reduce the number of free parameters by requiring that all
symmetries of the SM are respected. From the resulting op-
erators we only keep those that appear in the lowest-order
cross section of γγ → 4f . Specifically, we start from the
gauge-invariant CP -conserving effective Lagrangian with
dimension-6 operators [30]

LATGC
CC = ig1

αBφ

M2
W

(DµΦ)†Bµν(DνΦ)

−ig2
αWφ

M2
W

(DµΦ)†σ · Wµν(DνΦ)

−g2
αW

6M2
W

Wµ
ν · (Wν

ρ × Wρ
µ), (3.1)

where Φ is the Higgs doublet field and

Bµν = ∂µBν − ∂νBµ,

Wµν = (Wµν
1 , Wµν

2 , Wµν
3 )

= ∂µWν − ∂νWµ + g2Wµ × Wν (3.2)

are the field strengths of the U(1) and SU(2) gauge fields,
respectively. The Pauli matrices are combined into the
vector σ = (σ1, σ2, σ3), and the parameters g1, g2 denote
the gauge couplings.5 Inserting the vacuum expectation
value of the Higgs field Φ, we can relate the coefficients
αBφ, αWφ, and αW to the coefficients of the Lagrangian
considered in the LEP2 analysis [30],

5 In order to be compatible with the conventions of [36] used
for the SM amplitudes above, we had to change the sign of the
SU(2) coupling g2 with respect to [30].
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∆gZ
1 =

αWφ

c2
w

,

∆κγ = − c2
w

s2
w

(∆κZ − ∆gZ
1 ) = αWφ + αBφ,

λγ = λZ = αW . (3.3)

In contrast to the pure anomalous γWW coupling [29],
the SU(2)×U(1) symmetry of the effective Lagrangian (3.1)
induces additional anomalous γγWW and γWφ couplings.
The corresponding Feynman rules are

iΓ γW+W −
µνρ (k0, k+, k−) = −ie {∆κγ(k0νgµρ − k0ρgµν)

− λγ

M2
W

[k+µk−νk0ρ − k−µk+ρk0ν

+gνρ(k−µ(k+k0) − k+µ(k−k0))

+gµρ(k0ν(k+k−) − k−ν(k+k0))

+gµν(k+ρ(k−k0) − k0ρ(k+k−))]} ,

iΓ γγW+W −
µνρσ (k1, k2, k+, k−)

= −ie2 λγ

M2
W

{
gµνgρσ(k1 + k2)2 + gµρgνσ(k2k+ + k1k−)

+gνρgµσ(k1k+ + k2k−)

+gµν [(k1 + k2)ρk+σ + (k1 + k2)σk−ρ]

+gρσ [(k+ + k−)µk1ν + (k+ + k−)νk2µ]

+gµρ [(k1 − k2)σk+ν − k1νk+σ − k1σk−ν ]

+gµσ [(k1 − k2)ρk−ν − k1νk−ρ − k1ρk+ν ]

+gνρ [(k2 − k1)σk+µ − k2µk+σ − k2σk−µ]

+gνσ [(k2 − k1)ρk−µ − k2µk−ρ − k2ρk+µ]
}

, (3.4)

iΓ γWφ
µν (k0, kW , kφ) = −ie

∆κγ

MW
{(kφk0)gµν − kφ,µk0,ν} ,

where all fields and momenta are considered incoming. Note
that the neglect of the contribution to the quartic coupling
γγWW , which is proportional to λγ , would lead to a vi-
olation of electromagnetic gauge invariance in predictions
for γγ → WW (→ 4f). In contrast, neglecting the γWφ
coupling, which is proportional to ∆κγ , would not spoil
the electromagnetic gauge invariance of the predictions.

Next we consider anomalous triple gauge-boson cou-
plings involving only the neutral gauge bosons γ and Z.
AssumingLorentz invariance and electromagnetic gauge in-
variance, themost general effective dimension-6Lagrangian
for γγZ, γZZ, and ZZZ couplings can be written as [43]6

LATGC
NC =

e

M2
Z

{[
fγ
4 (∂µFµν) − fZ

4 (∂µZµν)
]
ZνρZ

ρ

+
[
fγ
5 (∂µFµν) − fZ

5 (∂µZµν)
]
Z̃νρZ

ρ

+
[
hγ

1(∂µFµν) − hZ
1 (∂µZµν)

]
FνρZ

ρ

6 Note that our conventions differ from those of [43] by a
minus sign in the Z-boson field.

+
[
hγ

3(∂µFµν) − hZ
3 (∂µZµν)

]
F̃νρZ

ρ
}

, (3.5)

with the abelian field-strength tensors

Fµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ (3.6)

and the dual field-strength tensors (ε0123 = +1)

F̃µν =
1
2

εµνρσFρσ, Z̃µν =
1
2

εµνρσZρσ. (3.7)

An operator inducing a γγγ coupling does not appear in
(3.5) since it violates electromagnetic gauge invariance.

Apart from the γγWW coupling which is induced by
symmetries in the Lagrangian (3.1), we also include gen-
uine anomalous quartic gauge-boson couplings (AQGC) in
our analysis, whose lowest dimension is 6. In [31,32] all
genuine dimension-6 AQGC that involve photons and that
are allowed by electromagnetic gauge invariance and custo-
dial SU(2)c have been classified; more general AQGC have
been discussed in [44]. Following [32] we use the effective
Lagrangian

LAQGC
γγV V = − e2

16Λ2

{
a0 FµνFµνWαW

α

+ac FµαFµβW
β
Wα

+ ã0 FµνF̃µνWαW
α

}
(3.8)

with the definition

Wµ =
(
W

1
µ,W

2
µ,W

3
µ

)
(3.9)

=
(

1√
2

(W+ + W−)µ,
i√
2

(W+ − W−)µ,
1
cw

Zµ

)
.

The scale of new physics, Λ, is introduced in (3.8) to ren-
der the coupling coefficients a0, ac, ã0 dimensionless. The
effective Lagrangian LAQGC

γγV V contains γγWW and γγZZ

couplings, whose Feynman rules can be found in [32]. The
other coupling structures Ln and L̃n considered in [32] in-
duce γZWW couplings that are not relevant for γγ → 4f .

3.2 Amplitudes with triple gauge-boson couplings

Before we write down the helicity amplitudes including
ATGC explicitly, we discuss the impact of these couplings
with respect to the SM cross section. The diagrams con-
taining ATGC and the corresponding quartic couplings
in CC diagrams are shown in Fig. 2. We quantify the
size of the anomalous contributions in terms of powers
of anomalous-coupling factors (generically denoted by a3)
or suppression factors ΓW /MW . Considering the SM pro-
cess γγ → WW → 4f as the leading contribution, i.e.,
regarding anomalous-coupling effects as small, we get non-
standard contributions to CC and CC/NC cross sections
from CC ATGC of the following orders:

(1) O(a3): The matrix elements of diagrams (a) and (b)
in Fig. 2 involve one power of a3. Both diagrams are not
suppressed by ΓW /MW since they are doubly resonant.
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Fig. 2. Representative diagrams with
anomalous γWW and γγWW couplings
(black blobs) contributing to CC pro-
cesses γγ → 4f

(2) O(a3ΓW /MW ): The diagram (c) of Fig. 2 has one
power of a3 and one resonant W boson propagator, i.e., it
is only singly resonant. Thus, it is of O(a3ΓW /MW ).

(3) O(a2
3): The diagrams (d) and (e) of Fig. 2 involve two

anomalous couplings a3 and are doubly resonant. There-
fore, they are of O(a2

3). Note that the squares of the di-
agrams (a) and (b), as well as their products with one
another, are of the same order as the interference of dia-
grams (d) and (e) with the SM amplitude.

There are nodiagrams containingCCATGCforNCpro-
cesses.

Next we consider the impact of NC ATGC, as defined
in the effective Lagrangian (3.5). The by far largest SM
cross sections of the process class γγ → 4f belong to di-
agrams with two resonant W bosons in CC and CC/NC
reactions. Thus, the largest effect of NC ATGC could be
expected from an interference of “anomalous diagrams”
with the SM amplitude for CC or CC/NC processes. The
only candidate of this kind is a diagram where an off-shell
s-channel Z-boson is produced by an anomalous γγZ cou-
pling that subsequently produces a W boson pair. However,
the effective γγZ coupling of (3.5) vanishes for two on-shell
photons, so that this diagram does not contribute. No other
CC diagram exists that includes a NC ATGC.

We now turn to the effects of NC ATGC in NC am-
plitudes, i.e., in diagrams without W bosons. The corre-
sponding SM amplitudes involve at most a single resonance
of the Z-boson, which leads already to a suppression of NC
cross sections with respect to CC cross sections by a factor
(ΓZ/MZ)2. This suppression is clearly visible in the numer-
ical results presented in Sect. 6.2.1 below. Diagrams with
one NC ATGC also possess at most one resonant Z-boson
and, therefore, show a suppression by a factor a3(ΓZ/MZ)2
with respect to the CC signal diagrams. This suppression
is not changed by interferences with doubly-resonant CC
diagrams in CC/NC processes because the Z- and W boson
resonances are located at different regions in phase space
and do not enhance each other. Diagrams with two NC
ATGC can involve two Z-boson resonances resulting in a
suppression of O(a2

3ΓZ/MZ), which is also small compared
to the CC case owing to the squared ATGC. In summary,

we conclude that the sensitivity of the processes γγ → 4f to
NC ATGC is much smaller than to CC ATGC. Therefore,
we restrict our investigation on ATGC to CC couplings in
the following.

As explained above, the diagrams ofFig. 2 induce contri-
butions to the amplitude that are either linear or quadratic
in the CC ATGC. We give the explicit contributions to the
helicity amplitudes in a way similar to the SM case (2.3),

Mσ1σ2σ3σ4
λ1λ2,CCATGC(ki, pj , Qj) = e4δσ1,−δσ2,+δσ3,−δσ4,+

g−
Wf̄1f2

g−
Wf̄3f4

δ3A
σ1σ3
λ1λ2

(ki, pj , Qj), (3.10)

with the auxiliary functions δ3A
σ1σ3
λ1λ2

. The generic ampli-
tude Mσ1σ2σ3σ4

λ1λ2,CCATGC is coherently added to the SM am-
plitude Mσ1σ2σ3σ4

λ1λ2,W of (2.3). The colour summation of the
squared amplitudes for the various process types proceeds
as described in Sects. 2.3.2 and 2.3.3.

The terms in δ3A
σ1σ3
λ1λ2

that are quadratic and linear in
ATGC explicitly read

δ3A
−−
++

∣∣∣
quad

= −PW (p1 + p2)PW (p3 + p4)

×PW (p1 + p2 − k1)〈k1p1〉〈k2p3〉

×
{

∆κ2
γ

×
[
〈p2p4〉∗〈k1k2〉 +

1
2M2

W

〈p1p2〉∗〈p3p4〉∗〈k1p1〉〈k2p3〉
]

+∆κγ
λγ

M2
W

× [〈p1p2〉∗〈p3p4〉∗ (〈k1p3〉〈k2p1〉 − 〈k1k2〉〈p1p3〉)
+〈k1k2〉 (〈p3p4〉∗〈k1p2〉∗〈k1p3〉
−〈p1p2〉∗〈k2p4〉∗〈k2p1〉)]

+
λ2

γ

M4
W

〈p1p2〉∗〈p3p4〉∗ 1
2

(p1 + p2 − k1)2
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× [〈k1p3〉〈k2p1〉 − 〈k1k2〉〈p1p3〉]
}

+(k1 ↔ k2),

δ3A
−−
+−

∣∣∣
quad

= −PW (p1 + p2)PW (p3 + p4)

×PW (p1 + p2 − k1)〈k2p4〉∗〈k1p1〉

×
{

−∆κ2
γ

×
[
〈k2p2〉∗〈k1p3〉 +

1
2M2

W

〈p1p2〉∗〈k2p4〉∗〈k1p1〉〈p3p4〉
]

+∆κγ
λγ

M2
W

[−2(p1 + p2 − k1)2〈k2p2〉∗〈k1p3〉

+〈p2[K2 − K1]p3〉〈k2[P1 + P2]k1〉
−〈p1p2〉∗〈k2p4〉∗〈p3p4〉〈k1p1〉]

+
λ2

γ

M4
W

〈p1p2〉∗〈p3p4〉

×
[
− 1

2
(p1 + p2 − k1)2〈k2p4〉∗〈k1p1〉

+〈p4[K2 − P3]k1〉〈k2[K1 − P2]p1〉
]}

+ ({p1, Q1; p2, Q2} ↔{p3, Q3; p4, Q4}) ,

δ3A
−−
++

∣∣∣
lin

= 2PW (p1 + p2)PW (p3 + p4)〈k2p1〉〈k2p3〉

× 〈p2p4〉∗

〈k1p2〉∗〈k1p4〉∗

×
[
∆κγ〈p2p4〉∗ − λγ

M2
W

〈p3p4〉∗〈p1p2〉∗〈p1p3〉
]

+
{

2(Q4 − Q3)PW (p3 + p4)PW (p3 + p4 − k2)

× [−Q1 + (Q1 − Q2)2(k1p1)PW (p1 + p2)]

×〈k2p3〉〈p2[P1 − K1]k2〉
〈k1p1〉∗〈k1p2〉∗

×
[
∆κγ〈p2p4〉∗ +

λγ

M2
W

〈p3p4〉∗〈p2[P4 − K2]p3〉
]

+ ({p1, Q1; p2, Q2} ↔{p3, Q3; p4, Q4})
}

+(k1 ↔ k2),

δ3A
−−
+−

∣∣∣
lin

= −2PW (p1 + p2)PW (p3 + p4)〈p1p3〉 〈k1p1〉〈k1p3〉
〈k2p1〉〈k2p3〉

×
[
−∆κγ〈p2p4〉∗

+
λγ

M2
W

(〈p1p2〉∗〈k2p4〉∗〈k2p1〉 − 〈p3p4〉∗〈k2p2〉∗〈k2p3〉

+ 〈p1p2〉∗〈p3p4〉∗〈p1p3〉)
]

−
{

2(Q1 − Q2)PW (p1 + p2)

×
[
[Q4 + (Q3 − Q4)2(k2p4)PW (p3 + p4)]

×PW (p1 + p2 − k1)
〈k1p1〉〈k1p3〉
〈k2p3〉〈k2p4〉

×
(

−∆κγ〈p2[P4 − K2]p3〉

+
λγ

M2
W

〈p1p2〉∗〈p1p3〉(p3 + p4 − k2)2
)]

+ ({p1, Q1; p2, Q2} ↔{p3, Q3; p4, Q4})
}

(3.11)

+ (c.c. and {p1, Q1; p3, Q3; k1} ↔{p2, Q2; p4, Q4; k2}) ,

where “c.c. and {. . .} ↔{. . .}” indicates that the complex
conjugate of the preceding expression has to be added after
some substitutions. The auxiliary functions for the remain-
ing polarizations follow from the relations (2.11) and (2.12).

In order to check our results, we have implemented
the ATGC of the effective Lagrangian (3.1) into the pro-
gram Madgraph [34] and compared our amplitudes with
the Madgraph results for various phase-space points. We
found perfect numerical agreement.

3.3 Amplitudes with genuine quartic
gauge-boson couplings

Figure 3 shows the only diagram with an AQGC (generi-
cally denoted by a4) that contributes to γγ → 4f . For CC
processes the “anomalous diagram” contributes in O(a4)
to the cross section, because it is (as the SM contribution)
doubly resonant. For NC processes, the diagram involves
one power of a4 and two Z-boson resonances and inter-
feres with the singly-resonant SM amplitude. In this case,
the contribution to the corresponding cross section is sup-
pressed by a4ΓZ/MZ with respect to CC cross sections,
i.e., the suppression factor involves one factor in the anoma-
lous coupling or in ΓZ/MZ less than we counted for NC
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Fig. 3. Diagram with AQGC (black blob) contributing to
γγ → 4f
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ATGC. In the following we take both CC and NC AQGC
into account.

The AQGC contributions to the amplitudes read

Mσ1σ2σ3σ4
λ1λ2,γγV V

=
e4

8Λ2 δσ1,−σ2δσ3,−σ4 gγγV V gσ1
V f̄1f2

gσ3
V f̄3f4

(3.12)

×PV (p1 + p2)PV (p3 + p4)δ4A
σ1σ3
λ1λ2

(k1, k2, p1, p2, p3, p4),

with
gγγWW = 1, gγγZZ =

1
c2
w

(3.13)

and

δ4A
−−
++(k1, k2, p1, p2, p3, p4)

= (4a0 − 4iã0 + ac)〈p2p4〉∗〈k1k2〉2〈p1p3〉,
δ4A

−−
+−(k1, k2, p1, p2, p3, p4)

= −2ac〈k2p2〉∗〈k2p4〉∗〈k1p1〉〈k1p3〉. (3.14)

The remaining auxiliary functions δ4A
σ1σ3
λ1λ2

can be obtained
via the substitutions

δ4A
σ1,+
λ1λ2

(k1, k2, p1, p2, p3, p4)

= δ4A
σ1,−
λ1λ2

(k1, k2, p1, p2, p4, p3),

δ4A
+,σ3
λ1λ2

(k1, k2, p1, p2, p3, p4)

= δ4A
−,σ3
λ1λ2

(k1, k2, p2, p1, p3, p4),

δ4A
σ1σ3
λ1λ2

(k1, k2, p1, p2, p3, p4)

=
(
δ4A

−σ1,−σ3
−λ1,−λ2

(k1, k2, p1, p2, p3, p4)
)∗

. (3.15)

The generic amplitude Mσ1σ2σ3σ4
λ1λ2,γγV V is coherently added to

the SM amplitude Mσ1σ2σ3σ4
λ1λ2,V of (2.3) for V = W, Z, respec-

tively. The colour summation of the squared amplitudes
for the various process types proceeds as in the SM case.

Again we have checked the amplitudes against results
obtained with Madgraph, as explained at the end of the
previous section.

4 Effective γγH coupling and Higgs resonance

In order to incorporate a possible Higgs resonance in γγ →
H → V V → 4f with V = W, Z, as depicted in Fig. 4, we
consider an effective coupling of the Higgs boson to two pho-
tons. In the SM this coupling is mediated via fermion
(mainly top-quark) and W boson loops. We define the
effective Lagrangian for the γγH vertex [45] by

LγγH = − gγγH

4
FµνFµν

H

v
, (4.1)

where v = 2MW sw/e is the vacuum expectation value of
the Higgs field H. Up to normalization, LγγH is the lowest-
dimensional, CP -conserving, electromagnetically gauge-
invariant operator for two photons and the scalar field
H. The corresponding Feynman rule reads

iΓ γγH
µν (k1, k2, kH) =

igγγH

v
[gµν(k1k2) − k1,νk2,µ] , (4.2)

where k1, k2 are the incoming photon momenta. Comparing
this Feynman rule to the loop-induced SM vertex with
the external fields on shell, which has, e.g., been given in
[20,45], we obtain

gγγH

∣∣∣
SM

=
α

π
(4.3)

×
{

6M2
W

M2
H

+ 1 +
6M2

W

M2
H

(2M2
W − M2

H)C0(MH , MW )

−2
∑

f

N c
fQ2

f

m2
f

M2
H

[
2 + (4m2

f − M2
H)C0(MH , mf )

]}
,

where the colour factor N c
f in the sum over all fermions

f is equal to 3 for quarks and 1 for leptons. The scalar
3-point integral C0 is given by

C0(MH , m) =
1

2M2
H

ln2
(

βm + 1
βm − 1

)
,

βm =

√
1 − 4m2

M2
H

+ i 0. (4.4)

The complete matrix elements for the diagrams with a
Higgs resonance (as shown in Fig. 4) can then be written as

Mσ1σ2σ3σ4
λ1λ2,HV V

= − e4

2s2
w

δσ1,−σ2δσ3,−σ4 gγγH gγγV V gσ1
V f̄1f2

gσ3
V f̄3f4

×PV (p1 + p2)PV (p3 + p4) (4.5)

×M2
HPH(k1 + k2) δHAσ1σ3

λ1λ2
(k1, k2, p1, p2, p3, p4),

with gγγV V defined in (3.13) and

δHA−−
++(k1, k2, p1, p2, p3, p4) =

〈k1k2〉
〈k1k2〉∗ 〈p2p4〉∗〈p1p3〉,

δHAσ1σ3±∓ (k1, k2, p1, p2, p3, p4) = 0. (4.6)

The other expressions for δHAσ1σ3
λ1λ2

follow in the same way
as described in (3.15) for δ4A

σ1σ3
λ1λ2

. The width in the Higgs-
boson propagator PH is introduced in the same way as in
Sect. 2.4 for the gauge bosons.
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Fig. 4. Diagram with effective γγH coupling (black blob)
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5 Monte Carlo integration

The squared matrix element is integrated over the phase
space following the strategy described in [16,41,46]. We
apply the multi-channel Monte Carlo technique [25] where
the integrand is flattened by choosing appropriate map-
pings of the pseudo-random numbers into the momenta of
the outgoing particles. This is necessary because the in-
tegrand shows a very complex peaking structure in eight
(γγ → 4f) or eleven (γγ → 4fγ) dimensions. This com-
plicated structure of the integrand (induced by various
diagram types) deteriorates the statistical error of the nu-
merical integration and can lead to numerically unstable
results. For each diagram we introduce an own appropri-
ate mapping, so-called “channels”, so that more events are
generated in regions where the squared matrix element of
the diagram is large. The multi-channel approach combines
these channels in such a way that the whole integrand is
widely smoothed everywhere. For each event a single chan-
nel is randomly chosen, and the phase-space configuration
is determined according to the mapping of this channel.
The probability to choose a given channel, called a pri-
ori weight, is optimized according to [26] to minimize the
statistical error as much as possible.

The convolution over the photon spectrum is given by

dσ =
∫ 1

0
dx1

∫ 1

0
dx2 fγ(x1) fγ(x2) dσγγ(x1P1, x2P2),

(5.1)
where dσγγ is the differential γγ cross section. The func-
tion fγ(xi) denotes the probability density for getting a
photon with momentum ki = xiPi, and Pi is the electron
momentum before Compton backscattering. In order to re-
duce the statistical error of this integration we use a simple
way of stratified sampling. The integration region for xi

of each photon spectrum is divided into a fixed number of
bins. We choose bin i with a probability αi and divide the
corresponding weight by αi. In this way the integration re-
mains formally unchanged if we normalize

∑
i αi = 1. The

parameters αi can be used to improve the convergence
of the numerical integration. By choosing the αi propor-
tional to the cross section of the corresponding bin i, more
events are sampled in regions where the photon spectrum
is large. Care has to be taken that the αi do not become too
small because this might lead to rare events with very large
weights that render the error estimate unreliable. This op-
timization typically reduces the Monte Carlo integration
error by a factor 2–5.

6 Numerical results

6.1 Input parameters

We use the following set of input parameters [47]:

MW = 80.423 GeV, ΓW = 2.118 GeV,

MZ = 91.1876 GeV, ΓZ = 2.4952 GeV,

MH = 170 GeV, ΓH = 0.3834 GeV,

α(0) = 1/137.03599976, αs = 1.1172,

Gµ = 1.16639 × 10−5 GeV−2, (6.1)

where the Higgs mass is chosen well above the W -pair
threshold so that intermediate Higgs bosons decay rapidly
into W -pairs; the corresponding decay width ΓH has been
obtained with the program HDECAY [48].

Furthermore, we apply the separation cuts

Eγ > 10 GeV, El > 10 GeV, Eq > 10 GeV,

θ(γ,beam) > 5◦, θ(l, γ) > 5◦, θ(q, γ) > 5◦,

θ(l, beam) > 5◦, θ(l, l′) > 5◦, θ(l, q) > 5◦,

θ(q, beam) > 5◦, m(q, q′) > 10 GeV, (6.2)

where q and l denote quarks and charged leptons, respec-
tively, and m(q, q′) is the invariant mass of an outgoing
quark pair. The energies EX and angles θ(X, Y ) are de-
fined in the laboratory frame. Using these cuts all infrared,
i.e., soft or collinear, singularities are removed from the
phase space.

In order to account for leading universal corrections,
we use two different values for the coupling constant α =
e2/(4π). Since on-shell photons couple to charged particles
with the coupling constant α(0) (effective electromagnetic
coupling at zero momentum transfer), we take this coupling
for each external photon in the processes γγ → 4f and
γγ → 4fγ. For CC reactions, the remaining couplings
correspond to Wff̄ vertices. For these vertices a large part
of the electroweak radiative corrections [23] (the running of
the electromagnetic coupling and the universal corrections
related to the ρ parameter) are absorbed into an effective
electromagnetic coupling αGµ which is derived from the
Fermi constant Gµ by

αGµ =
√

2GµM2
W s2

w

π
. (6.3)

Therefore, in the following numerical studies, we replace
α4 by α(0)2α2

Gµ
for the processes γγ → 4f and α5 by

α(0)3α2
Gµ

for γγ → 4fγ.
For the evaluation of the photon spectrum we use the

program CompAZ [27] with the polarization of the laser
beams −1 (i.e. photon helicity −1)7 and the polarization
of the electron beams +0.85. This choice for the relative
signs in the polarizations yields a sharper peak at the upper
end of the photon spectrum. Results for monochromatic
photon beams are always shown for unpolarized photons.

If not stated otherwise, the results are obtained in the
fixed-width scheme.

The numerical integration is carried out using 107

events. The runtime of our Monte Carlo program on a
PC with 2 GHz varies from 30 min to 6 h depending on
the considered process.

6.2 Results for integrated cross sections

6.2.1 Survey of cross sections

In order to illustrate the reliability of our Monte Carlo
generator we compare our results on cross sections for a

7 Internally in CompAZ the polarization of the laser light is
defined as the negative of the photon helicity.
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Table 2. Total cross sections for γγ → 4f at
√

s = 500 GeV for various final
states with and without convolution over the photon spectrum

Present work Whizard/Madgraph
γγ → σ4f [fb] σ4f [fb](conv) σ4f [fb] σ4f [fb](conv)
e−ν̄eνµµ+ 826.47(21) 190.87(10) 826.39(26) 191.05(16)
e−e+νµν̄µ 1.75460(62) 0.90525(61) 1.75518(78) 0.9050(11)
e−e+µ−µ+ 19.400(33) 19.129(61) 19.342(21) 19.188(48)
e−e+e−e+ 9.469(17) 9.357(32) 9.453(11) 9.383(25)
e−e+νeν̄e 828.34(21) 191.72(10) 828.29(26) 191.55(17)
e−ν̄eud̄ 2351.11(68) 565.05(33) 2351.79(84) 565.07(51)
νee

+dū 2350.84(68) 558.39(32) 2353.21(84) 558.41(50)
νeν̄euū 1.19761(50) 0.61256(50) 1.19684(57) 0.61083(71)
νeν̄edd̄ 0.095981(44) 0.049092(45) 0.096011(48) 0.049118(57)
e−e+uū 14.036(21) 10.597(26) 14.016(15) 10.574(21)
e−e+dd̄ 4.7406(29) 2.6614(32) 4.7377(28) 2.6651(38)
ud̄sc̄ 6659.6(2.1) 1603.8(1.0) 6663.5(2.7) 1605.0(1.5)
uūcc̄ 10.469(14) 6.111(12) 10.4531(88) 6.113(10)
with QCD 1543.6(2.9) 1071.3(2.9) – –
uūss̄ 3.3282(21) 1.6569(18) 3.3310(20) 1.6595(23)
with QCD 412.97(75) 288.79(72) – –
dd̄ss̄ 0.49807(29) 0.23232(24) 0.49804(30) 0.23252(32)
with QCD 96.34(18) 66.80(18) – –
uūuū 5.1846(69) 3.0298(57) 5.1900(45) 3.0419(53)
with QCD 772.6(1.5) 538.9(1.4) – –
dd̄dd̄ 0.24683(15) 0.11581(12) 0.24665(17) 0.11579(17)
with QCD 48.252(96) 33.685(88) – –
uūdd̄ 6663.5(2.3) 1606.1(1.1) 6664.8(2.8) 1604.6(1.6)
with QCD 7075.8(3.7) 1896.4(2.9) – –

representative set of the processes γγ → 4f and γγ → 4fγ
with the results obtained with the Monte Carlo program
Whizard (version 1.28) [33] which uses the matrix-element
generator Madgraph [34]8. In Tables 2 and 3 we list the
results for the 17 different final states defined in Table 1.
The numbers in parentheses correspond to the Monte Carlo
error. For the final states that can be produced via interme-
diate gluons we compute the cross section both with and
without gluon-exchange contributions. Since the version
of Madgraph implemented in Whizard is not able to deal
with interferences of electroweak and QCD diagrams, we
give only the pure electroweak Whizard/Madgraph results
for these processes. Furthermore, we list the corresponding
cross sections with and without convolution over the pho-
ton beam spectrum. For this study, we have implemented
the program CompAZ into Whizard.

As explained in Sect. 2.2, the cross sections for the CP -
equivalent final states e−ν̄eud̄(γ) and νee

+dū(γ) are not
identical if the convolution over the photon beam spectrum
is carried out.Therefore,we give results for bothfinal states.
In all other cases, the cross sections for a given final state
and for the CP -conjugated one coincide.

8 For a tuned comparison we rescaled the Whizard/Madgraph
results by a factor α(0)2α2

Gµ
/α4 for γγ → 4f and α(0)3α2

Gµ
/α5

for γγ → 4fγ.

CC and CC/NC processes possess the largest cross sec-
tions because of the dominance of W -pair production. The
convolution over the photon spectrum reduces these cross
sections significantly since low-energy photons cannot pro-
duce on-shell W -pairs. NC processes are affected less, and
in some cases, such as γγ → e+e−µ+µ−, the cross section
is only slightly reduced. Owing to the colour factors of the
quarks, hadronic and semi-leptonic cross sections differ by
roughly a factor 3, hadronic and leptonic cross sections by
roughly a factor 32 = 9. For CC processes γγ → 4f we
obtain a rough estimate of the cross sections by multiply-
ing the cross section of γγ → WW with the branching
ratios of the W bosons into leptons or quarks depending
on the final state. Note that this estimate, which is only
good within 10−20%, does not take into account contribu-
tions from background diagrams, width effects, and cuts on
final-state fermions. The difference of cross sections for CC
processes and the corresponding processes of mixed type
reflects the size of the background contributions induced
by NC diagrams.

The results of Whizard, which are also generated with
107 events, and of our program typically agree within 1–2
standard errors. The size of the statistical errors obtained
with Whizard and our program is comparable. The runtime
of Whizard is usually somewhat bigger than the one of our
program. Depending on the process class, the speed of our
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Table 3. Total cross sections for γγ → 4fγ at
√

s = 500 GeV for various final states
with and without convolution over the photon spectrum

Present work Whizard/Madgraph
γγ → σ4fγ [fb] σ4fγ [fb](conv) σ4fγ [fb] σ4fγ [fb](conv)
e−ν̄eνµµ+γ 39.234(44) 6.188(11) 39.218(29) 6.2040(87)
e−e+νµν̄µγ 0.10157(10) 0.028612(40) 0.101556(88) 0.028548(52)
e−e+µ−µ+γ 1.0567(35) 0.5083(28) 1.0547(20) 0.5091(29)
e−e+e−e+γ 0.5085(18) 0.2433(13) 0.5091(10) 0.2461(12)
e−e+νeν̄eγ 39.301(46) 6.213(11) 39.332(30) 6.2069(89)
e−ν̄eud̄γ 96.61(13) 14.216(27) 96.575(75) 14.159(21)
νee

+dūγ 96.60(13) 15.459(30) 96.520(76) 15.429(22)
νeν̄euūγ 0.030818(35) 0.008640(14) 0.030756(28) 0.008609(16)
νeν̄edd̄γ 0.00061753(75) 0.00017313(31) 0.00061731(56) 0.00017358(34)
e−e+uūγ 0.6446(17) 0.25463(99) 0.6477(10) 0.2579(10)
e−e+dd̄γ 0.26653(36) 0.08137(17) 0.26689(28) 0.08166(21)
ud̄sc̄γ 229.86(36) 32.621(81) 229.52(19) 32.531(49)
uūcc̄γ 0.30556(69) 0.10718(34) 0.30563(47) 0.10836(43)
with QCD 34.73(14) 13.801(77) – –
uūss̄γ 0.08791(13) 0.026278(59) 0.087935(98) 0.026271(65)
with QCD 6.362(23) 2.493(13) – –
dd̄ss̄γ 0.0046253(71) 0.0014842(37) 0.0046191(52) 0.0014832(36)
with QCD 0.5427(22) 0.2165(11) – –
uūuūγ 0.15081(33) 0.05301(16) 0.15082(21) 0.05332(16)
with QCD 17.377(71) 6.964(35) – –
dd̄dd̄γ 0.0022893(37) 0.0007421(21) 0.0022878(25) 0.0007398(18)
with QCD 0.2716(11) 0.10863(53) – –
uūdd̄γ 229.86(40) 32.85(15) 229.65(19) 32.518(51)
with QCD 236.31(42) 35.14(11) – –
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Fig. 5. Integrated cross sections of the pro-
cesses γγ → e−ν̄eud̄(γ) with and without
convolution over the photon spectrum as a
function of the CM energy

√
s

program is 1−7 times higher, where the largest difference
occurs for NC processes.

6.2.2 Energy dependence of integrated cross sections

In Fig. 5 we show the cross sections for the processes γγ →
e−ν̄eud̄(γ) as a function of the centre-of-mass (CM) energy√

s with and without convolution over the photon spec-
trum. Here and in the following, with convolution over

the photon spectrum
√

s stands for the CM energy
√

see

of the incoming electron beams; without convolution it is
the CM energy √

sγγ of the incoming photons. In the case
without photon spectrum, the rise of the cross section is
clearly visible at the W -pair threshold, √

sγγ � 160 GeV.
For γγ → e−ν̄eud̄ the cross section increases roughly pro-
portional to β =

√
1 − 4M2

W /sγγ above the threshold,
as expected from the two-particle phase space of the W -
pairs. For γγ → e−ν̄eud̄γ the rise of the cross section is not
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Fig. 6. Different contributions to the in-
tegrated cross sections for the processes
γγ → uūdd̄(γ) as a function of the CM
energy without photon spectrum

as steep because of the higher-dimensional WWγ phase
space. The convolution over the photon spectrum reduces
the available energy for W -pair production and shifts the
onset of the cross section to higher CM energies.

The cross sections for γγ → 4f as well as γγ → 4fγ
decrease at high energies, even though the total cross sec-
tion of the γγ → WW process approaches a constant in
the high-energy limit if no cuts are imposed, i.e., if the W
bosons are allowed to go in the beam directions. At high
energies, however, forward and backward scattering of W
bosons is restricted due to the cuts applied to the outgo-
ing fermions, because the decay fermions mainly follow the
direction of the decaying W boson.

6.2.3 Contributions from CC, NC,
and gluon-exchange diagrams

InFig. 6we show the impact ofCC,NC, andgluon-exchange
diagrams on the CC/NC processes γγ → uūdd̄ and γγ →
uūdd̄γ. We do not include the photon spectrum in this anal-
ysis. Above theW -pair threshold,√sγγ > 160 GeV, theCC
diagrams are clearly dominating, while the contributions
from gluon-exchange diagrams are one or two orders of
magnitude smaller. The impact of the gluon-exchange dia-
grams strongly depends on the choice of the invariant-mass
cut between two quarks, and gluon-exchange diagrams are
more important if the invariant-mass cut is small. The con-
tributions from pure NC diagrams are totally negligible as
long as W -pair production is possible.

6.2.4 W -pair signal diagrams and double-pole approximation

In Fig. 7 the cross sections of the W -pair signal diagrams
and the DPA for γγ → WW → 4f (see Sect. 2.5 for defini-
tions) are compared with the complete lowest-order cross
section for several processes. The plots on the LHS show the
cross sections for various final states calculated from the
full set of (electroweak) diagrams, from the signal diagrams
only, and in DPA separately for hadronic, semi-leptonic,
and leptonic final states, while the plots on the RHS show
the relative deviation from the corresponding DPA. We do

not include the convolution over the photon spectrum and
gluon-exchange diagrams in this analysis so that effects
of the approximation are clearly visible. For energies not
too close to the W -pair threshold, the DPA agrees with
the full lowest-order cross section within 1–3%, which is
of the expected order of ΓW /MW . Near threshold, i.e. for√

sγγ − 2MW = O(ΓW ), the reliability of the DPA breaks
down, since background diagrams become more and more
important and small scales γ, such as

√
sγγ − 4M2

W , can
increase the naive error estimate from ΓW /MW to ΓW /γ.
The cross sections of the W -pair signal diagrams, however,
shows large deviations from the full γγ → 4f cross sections
for the whole energy range, in particular, at high energies.
As explained in Sect. 2.5, the W -pair signal diagrams are
not gauge invariant, and thus the reliability and usefulness
of the resulting predictions should be investigated care-
fully. The results of Fig. 7 clearly show that a naive signal
definition is a bad concept for γγ → WW → 4f , since de-
viations from the full process γγ → 4f even reach 5–10%
in the TeV range. This is in contrast to the situation at
e+e− colliders where the naive W -pair signal (defined in
‘t Hooft–Feynman gauge) was a reasonable approximation
(see, e.g., [35]).

The failure of the naive W -pair signal definition for
γγ collisions was also pointed out in [6, 7] before. In [7]
an “improved narrow-width approximation” was presented
which provides another variant for a gauge-invariant W -
pair signal definition. It is based on the factorization of
production and decay matrix elements, while retaining W -
spin correlations.

6.2.5 Comparison of schemes
for introducing finite gauge-boson widths

In this section we compare the different implementations
of gauge-boson widths described in Sect. 2.4 numerically.
As explained in Sect. 2.4, the complex-mass scheme is the
only scheme that yields gauge-invariant results in general,
but for the process classes γγ → 4f(γ) the fixed-width ap-
proach (in the non-linear gauge) also yields amplitudes that
respect Ward identities and gauge cancellations. Table 4
lists the cross sections for the processes γγ → e−ν̄eνµµ+
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Fig. 7. Cross sections of vari-
ous processes including all dia-
grams, only W -pair signal dia-
grams, and in DPA as a function of
the CM energy (LHS), and the cor-
responding relative deviations from
the DPA (RHS); photon spectrum
and gluon-exchange diagrams are
not included

and γγ → e−ν̄eνµµ+γ obtained with the fixed W -width,
the step-width, the running-width, and with the complex-
mass scheme. The results of all four schemes for the pro-
cess γγ → e−ν̄eνµµ+ agree within the expected accuracy
of O(ΓW /MW ) up to energies in the TeV range. However,
for γγ → e−ν̄eνµµ+γ the running-width scheme yields to-
tally wrong results for several TeV, while the other schemes
are still in good agreement. Although the gauge-invariance-
breaking effects in the running-width scheme are formally of
O(ΓW /MW ), they are enhanced by spoiling gauge cancella-

tions, thereby ruining the reliability of the prediction com-
pletely.

For the semi-leptonic γγ → 4f process it was already
observed in [7] that the cross section does not vary signifi-
cantly if the fixed-width, the running-width, or a so-called
“fudge-factor” scheme is used for introducing finite widths.
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Table 4. Cross sections for the processes γγ → e−ν̄eνµµ+ and γγ → e−ν̄eνµµ+γ
for various CM energies and various width schemes without convolution over the
photon spectrum
√

sγγ [GeV] 500 800 1000 2000 10000
σ(γγ → e−ν̄eνµµ+)

fixed width 826.40(21) 788.35(21) 746.94(21) 500.70(20) 31.745(68)
step width 827.45(22) 789.34(21) 748.17(23) 501.41(21) 31.746(68)
running width 827.43(23) 789.29(21) 748.11(23) 501.32(21) 31.715(68)
complex mass 826.23(21) 788.18(21) 746.78(21) 500.59(20) 31.738(68)

σ(γγ → e−ν̄eνµµ+γ)
fixed width 39.230(45) 47.740(73) 49.781(91) 43.98(18) 4.32(23)
step width 39.253(45) 47.781(73) 49.881(96) 44.01(18) 4.31(24)
running width 39.251(49) 47.781(74) 49.898(95) 44.48(22) 10.83(28)
complex mass 39.221(45) 47.730(73) 49.770(91) 43.97(18) 4.31(23)
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Fig. 8. Invariant-mass distribution of
the W+-boson reconstructed from the ud̄
quark pair (LHS) as well as its production-
angle distribution (RHS) in the reaction
γγ → e−ν̄eud̄ at

√
s = 500 GeV with and

without convolution over the photon spec-
trum

6.3 Distributions

6.3.1 Distributions for reconstructed W bosons

In Fig. 8 we show the invariant-mass and angular dis-
tributions of the intermediate W+-boson for the process
γγ → e−ν̄eud̄ at

√
s = 500 GeV. The momentum of the

W+-boson is reconstructed from the outgoing quark pair
in the decay W+ → ud̄. Figure 8 also illustrates the effect
of the convolution over the photon spectrum.

The resonance in the invariant-mass distribution (LHS
of Fig. 8) has the typical Breit–Wigner shape and can be
used to determine the W boson mass and width at a γγ
collider. Moreover, owing to its large cross section, the
W -reconstruction in this reaction seems to be a promis-
ing possibility for detector calibration at a γγ collider.
Similarly to the integrated cross sections discussed in the
previous sections, the convolution qualitatively rescales the
distribution by roughly a factor 4.

The RHS of Fig. 8 shows the distribution in the angle
θud̄ between the W+-boson and the beam axis. Since the
incoming γγ state is symmetric with respect to interchange
of the two photons, the angular distribution is symmetric
in the production angle θud̄. W bosons are predominantly
produced in forward or backward direction owing to dia-

grams with t- and u-channel exchange of W bosons. For the
process γγ → WW with on-shell W bosons, the forward
and backward peaks are integrable and lead to a constant
cross section in the high-energy limit. As already pointed
out in Sect. 6.2.2, the angular cuts (6.2) restrict the avail-
able phase space of the intermediate W bosons and lead
to a reduction of the forward and backward peaks for suf-
ficiently high energies. Note that the reduction induced by
the convolution over the photon spectrum is not uniform,
but tends to flatten the shape of the angular distribution
slightly. This is mainly due to the reduced CM energy in
the photon spectrum, leading to a less pronounced peaking
behaviour in the forward and backward directions.

6.3.2 Energy and production-angle distributions of fermions

InFig. 9we show the energy and angular distributions of the
outgoing fermions e−, u, and d̄ in the reaction γγ → e−ν̄eud̄
at

√
s = 500 GeV with and without convolution over the

photon spectrum.
For monochromatic, unpolarized incoming γ beams (i.e.

without convolution over the photon spectrum), the energy
distributions (LHS of Fig. 9) of the fermions e−, u, and d̄
almost coincide and are maximal at their largest and small-
est kinematical limits. These regions are dominated by the
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Fig. 9. Energy (LHS) and
production-angle (RHS) distri-
butions of the outgoing fermions
e−, u, and d̄ in the process
γγ → e−ν̄eud̄ at

√
s = 500 GeV

with and without convolution over
the photon spectrum

situations where the respective W boson emits the con-
sidered fermion parallel or anti-parallel to its direction of
flight. The convolution over the photon spectrum changes
the shapes of the energy distributions considerably. Since
the photon spectrum falls off rapidly for energies above 80%
of the incoming electron energy, energies of the final-state
fermions larger than 200 GeV become practically impossi-
ble. For fermion energies below 200 GeV the shapes of the
distributions of the outgoing fermions e− and u look rather
different from the one for the anti-fermion d̄. This effect

is due to the effective γ beam polarization in the photon
spectrum; for unpolarized γ beams the energy distribu-
tions would look almost identical. In detail, the effective
polarization of the γγ system is mainly (λ1λ2) = (++),
leading predominantly to W+W− production with effec-
tive helicities (++) (see, e.g., [7, 21]). Owing to helicity
conservation, however, W bosons with helicity +1 can-
not decay into fermion–anti-fermion pairs with a fermion
(which must have helicity − 1

2 ) parallel to the flight direc-
tion of the W boson. Thus, much more anti-fermions (which
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Fig. 10. Invariant-mass distribution of
the four-quark final state for the pro-
cess γγ → ud̄sc̄ at

√
see = 260 GeV

including convolution over the photon
spectrum

have helicity + 1
2 ) than fermions follow the directions of the

decaying W bosons, which qualitatively explains the reduc-
tion (enhancement) of the fermion (anti-fermion) energy
distributions at the upper kinematical energy limit. The
above arguments are nicely illustrated in [7], where the
fermion energy distributions are shown for fully polarized,
monochromatic photon beams.

The RHS of Fig. 9 shows the distributions in the angles
θf of the (anti-)fermions f = e−, u, d̄ to the beam axis.
Because of the symmetry of the incoming γγ state with
respect to interchange of the two photons, the angular
distribution is symmetric in θf . The forward and back-
ward peaks originate from two sources. The by far largest
contribution to the differential cross section comes from
signal diagrams and thus from configurations where the
W bosons as well as the decay fermions are nearly parallel
to the beam. The second source, which is widely suppressed
by the applied cuts, is related to collinear singularities of
background diagrams where an incoming photon splits into
an fermion–anti-fermion pair ff̄ , with the fermion or anti-
fermion directly going into the final state. If the phase
space of the outgoing (anti-)fermion is not restricted by
cuts, such collinear or mass singularities lead to logarithms
of the form ln(s/m2

f ), where mf is the fermion mass. Since
our calculation is done for massless fermions, the collinear
singularities must be excluded by phase-space cuts and the
fermion mass in ln(s/m2

f ) is replaced by the corresponding
cut parameter.

The photon spectrum reduces the differential cross sec-
tion over the whole range and again flattens the angular
distributions, especially in the cases of outgoing fermions.
The significant difference between the outgoing fermions
and anti-fermions is again due to the effective γ polariza-
tion in the photon spectrum. As explained above, more
anti-fermions than fermions follow the flight directions of
the W bosons, which are mainly produced in the forward
and backward directions. This is the reason why the θe−

and θu distributions are flattened, while the peaking be-
haviour in the θd̄ distribution is more pronounced after the
convolution over the photon spectrum.

6.3.3 Higgs-boson resonance

In Fig. 10 we show the invariant-mass distribution of the
Higgs boson for the process γγ → H → WW → ud̄sc̄ for
a Higgs mass of MH = 170 GeV. The CM energy of the
electron beams is chosen to be

√
see = 260 GeV which max-

imizes the γγ luminosity in the region √
sγγ ∼ MH . The

invariant mass Mud̄sc̄ of the Higgs boson is reconstructed
from its decay products which are the four outgoing quarks.
This means that Mud̄sc̄ is equal to the photonic CM en-
ergy, Mud̄sc̄ = √

sγγ . Thus, the shape of the distribution
depends on the form of the photon spectrum very strongly.
The effective γγH coupling is set to the SM value (4.3).
For comparison the situation without Higgs resonance is
also included in Fig. 10, illustrating the significance of the
Higgs signal. The different peak heights in the two plots
simply result from different bin sizes.

6.4 Anomalous couplings

In this section we study the impact of possible anomalous
gauge-boson couplings on CC cross sections of the process
class γγ → 4f . In order to estimate the full sensitivity of
a future γγ collider, such as the γγ option at TESLA, on
anomalous couplings, in addition differential distributions
and realistic event selections should be taken into account.
Such a study goes beyond the scope of this paper, but our
Monte Carlo generator can serve as a tool in this task.

We consider only semi-leptonic final states, since these
have the cleanest experimental signal. The cross section
for semi-leptonic final states is obtained from the sum over
all reactions γγ → l−ν̄lqq̄

′, with q = u, c and l = e, µ, τ ,
and their corresponding charge-conjugated processes γγ →
νll

+q′q̄. The results are shown in Fig. 11 for ATGC and in
Fig. 12 for AQGC. In the left plot of Fig. 11 and the upper
plot of Fig. 12 we show the cross section as a function of the
anomalous-coupling constant normalized to the SM cross
section. As can be seen in the insert of Fig. 11, the minimum
in the ∆κγ curve is shifted to negative values which is
caused by contributions to the cross section that are linear
in ∆κγ . These contributions result from the interference
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Fig. 11. Combined cross section
for semi-leptonic final states as a
function of the ATGC ∆κγ and λγ

(LHS) and 1σ contours (RHS) in the
(∆κγ , λγ) plane at

√
see = 500 GeV

including the convolution over the
photon spectrum
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Fig. 12. Combined cross section for
semi-leptonic final states as a func-
tion of the AQGC a0, ac, and ã0

(upper plot) and 1σ contours (LHS
projection, RHS section) in the co-
ordinate planes at

√
see = 500 GeV

including the convolution over the
photon spectrum

between matrix elements linear in the ATGC ∆κγ with
the SM amplitude. On the other hand, the interferences
for the ATGC λγ are small. In the case of AQGC, such
interferences are relatively large for ac.

In order to examine the sensitivity of a linear collider
to anomalous couplings, we consider a γγ collider with an
integrated luminosity of L = 100 fb−1 and a CM energy of√

see = 500 GeV [1]. We define

χ2 ≡ (N(ai) − N)2

N

with N = σSML, N(ai) = σ(ai)L, (6.4)

where N is the expected number of events in the SM and
N(ai) the number of events in the SM extended by the
non-standard couplings. In Figs. 11 and 12 the 1σ con-
tours corresponding to χ2 = 1 are shown. Note that the
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1σ contour can result from N(ai) > N and N(ai) < N .
While χ2 = 1 with N(ai) > N is always possible for suffi-
ciently large anomalous couplings, χ2 = 1 with N(ai) < N
requires large interference effects of matrix elements with
anomalous couplings. In our case, both branches of the 1σ
contours are realized. In Fig. 11 the plot on the RHS shows
the 1σ contours in the (∆κγ , λγ) plane. Since the cross
section is a polynomial up to fourth power in the ATGC,
the contours are not of elliptic form. The allowed region
lies between the two contours that are rather close to each
other so that they cannot be distinguished in the insert
which shows the contours on a larger scale. Note that in
the limit of large luminosity the contour in the insert of
the RHS of Fig. 11 does not shrink to a point, but reduces
to a line in the (∆κγ , λγ) plane on which σanom = σSM.
In order to resolve this correlation between ∆κγ and λγ ,
anomalous effects on distributions should be considered,
or other constraints from the e+e− or e−γ modes should
be included.

In case of AQGC the cross section is at most quadratic
in the AQGC, and the χ2 = 1 surface consists of two
ellipsoids in the (a0, ac, ã0) space. The existence of two
branches is again due to large interferences of anomalous
contributions. In the lower left plot of Fig. 12 we show
the projections of the outer ellipsoid into the coordinate
planes of two AQGC (where the third AQGC is zero). In
the lower right plot the sections of both ellipsoids with
these planes are given. Since the centre of the ellipsoids
is shifted in the ac and a0 directions, the terms in σ(ai)
linear in these couplings are significant; they result from
interferences of the diagram with the AQGC with the SM
amplitude. Interferences that are proportional to ã0 turn
out to be small. From (3.14) it is obvious that there are no
a0ã0 and acã0 terms in σ(ai). Consequently, the projection
into and the section with the (a0, ac) plane coincide. On the
other hand, the two other projections and sections differ,
signalling that the aca0 term in σ(ai) is significant.

The allowed 1σ region (χ2 < 1) in the (a0, ac, ã0) space
is the shell at the boundary of the shown ellipsoid. Similar
to the observation made above for the ATGC, the size of
the ellipsoid does not shrink for larger luminosity, only the
thickness of the shell will decrease. This means that the size
of the projections shown in the lower left plot of Fig. 12 will
not reduce for larger luminosity. Thus, using only informa-
tion on an integrated cross section (for a fixed energy) could
not improve the bounds on AQGC with respect to the ones
resulting from e+e− → WWγ → 4fγ [32]. However, the
thinness of the shell of the ellipsoid, as illustrated in the
lower right plot of Fig. 12, shows that the bounds can be
drastically tightened if the correlation between the three
AQGC is resolved. Differential distributions will certainly
provide this information, so that a γγ collider should be
able to constrain AQGC by an order of magnitude better
than an e+e− collider operating at comparable energy.

7 Summary

A Monte Carlo generator, which is based on multi-channel
techniques with adaptive self-optimization, has been con-

structed for lowest-order predictions for the processes γγ →
4f and γγ → 4fγ. Fermions are treated in the massless
approximation. Anomalous triple and quartic gauge-boson
couplings, as well as an effective γγH coupling, are included
in the transition matrix elements for γγ → 4f . For γγ → 4f
compact results for the helicity amplitudes are presented
in terms of Weyl–van der Waerden spinor products.

Using this generator, we have presented a variety of
numerical results.

(1) A representative list of integrated cross sections
for the processes γγ → 4f and γγ → 4fγ is compared
to results obtained with the Whizard/Madgraph package.
We find agreement between both Monte Carlo programs.

(2) The dependence of some γγ → 4f and γγ → 4fγ
cross sections on the CM energy is shown. In this context,
the influence of a realistic photon beam spectrum and the
size of subcontributions originating from charged-current,
neutral-current, or strong interactions are investigated.

(3) The complete lowest-order cross section for γγ →
WW → 4f is compared with the corresponding double-
pole approximation, revealing an accuracy of the latter of
1−3%. While this deviation is of the naively expected or-
der of ΓW /MW , the gauge-variant subset of diagrams with
two resonant W bosons, the so-called “CC03” signal dia-
grams, yields differences of 5−10% to the full calculation.
The deviations of the naive signal grow with increasing en-
ergy, whereas the quality of the double-pole approximation
remains stable.

(4) Different schemes for introducing a finite width for
gauge bosons are analyzed, and good agreement between
the gauge-invariant complex-mass scheme and the fixed-
width scheme is found. However, the results also reveal
problems (at least in γγ → 4fγ) when using the running
width.

(5) A few differential distributions are discussed for
γγ → 4f processes that proceed via charged-current in-
teractions, in particular comprising distributions in the in-
variant mass and in the production angle of reconstructed
W bosons and in the invariant mass of a resonant Higgs
boson. Moreover, it is shown that the convolution over the
photon spectrum significantly distorts energy and angular
distributions of the produced fermions due to an effective
photon polarization.

(6) Finally, we examine the effects of anomalous triple
and quartic gauge-boson couplings on γγ → 4f cross sec-
tions. Since contributions of anomalous couplings to cross
sections can cancel in specific configurations, it is necessary
to take into account results from other observables (such as
differential distributions) or from other experiments (such
as e+e− or e−γ collisions) in order to constrain individual
anomalous couplings. Our results suggest that an analysis
of the processes γγ → 4f can constrain anomalous γγWW
couplings about an order of magnitude better than study-
ing e+e− → 4fγ.

Apart from studying the processes γγ → 4f and γγ →
4fγ in lowest order the described event generator is a first
step towards a precision calculation of the process γγ →
WW → 4f which has to include radiative corrections to
the dominating W -pair production process. In particular,
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the results for the radiative processes γγ → 4fγ can serve
as a basic building block in this task. In a next step, we
will complete the calculation of electroweak corrections in
the double-pole approximation similar to the approach of
RacoonWW for e+e− annihilation.

Acknowledgements. A. Denner is gratefully acknowledged for
valuable discussions and for carefully reading the manuscript.
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6. M. Moretti, Nucl. Phys. B 484, 3 (1997) [hep-ph/9604303];

hep-ph/9606225; E. Boos, T. Ohl, Phys. Lett. B 407, 161
(1997) [hep-ph/9705374]

7. M. Baillargeon, G. Bélanger, F. Boudjema, Phys. Lett. B
404, 124 (1997) [hep-ph/9701368]

8. M. Baillargeon, G. Bélanger, F. Boudjema, Nucl. Phys. B
500, 224 (1997) [hep-ph/9701372]

9. G. Tupper, M.A. Samuel, Phys. Rev. D 23, 1933 (1981);
S.Y. Choi, F. Schrempp, Phys. Lett. B 272, 149 (1991);
E. Yehudai, Phys. Rev. D 44, 3434 (1991)

10. I.B. Marfin, V.A. Mossolov, T.V. Shishkina, hep-
ph/0304250

11. G. Bélanger, G. Couture, Phys. Rev. D 49, 5720 (1994);
S.Y. Choi, K. Hagiwara, M.S. Baek, Phys. Rev. D 54, 6703
(1996) [hep-ph/9605334]

12. M. Herrero, E. Ruiz-Morales, Phys. Lett. B 296, 397 (1992)
[hep-ph/9208220]; P. Poulose, L.M. Sehgal, Phys. Lett. B
552, 57 (2003) [hep-ph/0211179]

13. A. Aeppli, G.J. van Oldenborgh, D. Wyler, Nucl. Phys. B
428, 126 (1994) [hep-ph/9312212]

14. S. Jadach et al., Phys. Rev. D 61, 113010 (2000) [hep-
ph/9907436]; 65, 093010 (2002) [hep-ph/0007012]; Com-
put. Phys. Commun. 140, 432 (2001) [hep-ph/0103163];
140, 475 (2001) [hep-ph/0104049]

15. W. Beenakker, F.A. Berends, A.P. Chapovsky, Nucl. Phys.
B 548, 3 (1999) [hep-ph/9811481]

16. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Nucl.
Phys. B 560, 33 (1999) [hep-ph/9904472]

17. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Phys.
Lett. B 475, 127 (2000) [hep-ph/9912261]; LC-TH-2000-
014 [hep-ph/9912447]; Nucl. Phys. B 587, 67 (2000) [hep-
ph/0006307]; hep-ph/0101257; Comput. Phys. Commun.
153, 462 (2003) [hep-ph/0209330]

18. Y. Kurihara, M. Kuroda, D. Schildknecht, Phys. Lett. B
509, 87 (2001) [hep-ph/0104201]

19. A. Denner, S. Dittmaier, R. Schuster, Phys. Rev. D 51,
4738 (1995) [hep-ph/9411268]

20. A. Denner, S. Dittmaier, R. Schuster, Nucl. Phys. B 452,
80 (1995) [hep-ph/9503442]

21. G. Jikia, Nucl. Phys. B 494, 19 (1997) [hep-ph/9612380]
22. I.B. Marfin, V.A. Mossolov, T.V. Shishkina, hep-

ph/0305153; hep-ph/0401068
23. D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys. C 32, 121

(1986); F. Jegerlehner, Z. Phys. C 32, 425 (1986) [Erratum
C 38, 519 (1988)]; A. Denner, T. Sack, Z. Phys. C 46, 653
(1990)

24. K. Melnikov, O.I. Yakovlev, Nucl. Phys. B 471, 90
(1996) [hep-ph/9501358]; W. Beenakker, A.P. Chapovsky,
F.A. Berends, Phys. Lett. B 411, 203 (1997) [hep-
ph/9706339]; Nucl. Phys. B 508, 17 (1997) [hep-
ph/9707326]; A. Denner, S. Dittmaier, M. Roth, Nucl.
Phys. B 519, 39 (1998) [hep-ph/9710521]

25. F.A. Berends, R. Pittau, R. Kleiss, Nucl. Phys. B 424,
308 (1994) [hep-ph/9404313]; Comput. Phys. Commun.
85, 437 (1995) [hep-ph/9409326]; F.A. Berends, P.H. Dav-
erveldt, R. Kleiss, Nucl. Phys. B 253, 441 (1985); J. Hilgart,
R. Kleiss, F. Le Diberder, Comput. Phys. Commun. 75,
191 (1993)

26. R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141
(1994) [hep-ph/9405257]

27. A.F. Zarnecki, Acta Phys. Polon. B 34, 2741 (2003) [hep-
ex/0207021]

28. V. Telnov, Nucl. Instrum. Meth. A 355, 3 (1995); P. Chen,
T. Ohgaki, A. Spitkovsky, T. Takahashi, K. Yokoya, Nucl.
Instrum. Meth. A 397, 458 (1997) [physics/9704012]

29. K.J.F. Gaemers, G.J. Gounaris, Z. Phys. C 1, 259 (1979);
K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl.
Phys. B282, 253 (1987); M.S. Bilenky, J.L. Kneur, F.M. Re-
nard, D. Schildknecht, Nucl. Phys. B 409, 22 (1993)

30. G. Gounaris et al., in Physics at LEP2, edited by
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